Further Maths Revision Paper 3

This paper consists of 5 questions covering CP1, CP2, FP1 and FM1. (AS Further Maths: Q1 and 3)

1

Use the t-formula to solve

$$
3 \sin \theta-2 \cos \theta=1
$$

in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$

2

Two identical elastic strings of length 1 m and modulus of elasticity 4.9 N are each attached to a particle of mass 0.5 kg .
Their other two ends are fixed to two points 4 m apart in a vertical line.
(a) Find the height of the particle above the lower fixed point A in the equilibrium position.

The particle is now pulled down to A and released from rest.
(b) Find the greatest height above A to which the particle rises
(a) Verify that the complex number $\alpha=e^{\frac{2 \pi i}{5}}$ is a root of the equation $z^{5}-1=0$.
(b) Show that $1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}=0$
(c) Find a quadratic equation whose roots are $\alpha+\alpha^{4}$ and $\alpha^{2}+\alpha^{3}$
(d) Hence, or otherwise, show that

$$
\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}
$$

(a) The roots of the equation $x^{3}+p x^{2}+q x-30=0$ are in the ratio $2: 3: 5$ Find p and q.
(b) If the roots of the equation

$$
4 x^{3}+7 x^{2}-5 x-1=0
$$

are α, β, γ find the equation whose roots are $\alpha \beta, \beta \gamma, \gamma \alpha$

Find the equations of the tangents to the hyperbola $3 x^{2}-4 y^{2}=1$ which make equal angles with the axes.

